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SUMMARY

This report documents all pre-irradiation examination material-property
measurement data for graphite specimens that were to be used within the fifth
advanced graphite capsule (AGC) -5 irradiation capsule. The AGC-5 capsule was
to be the fifth in six planned irradiation capsules comprising the AGC test series
that was designed to irradiate graphite specimens in a temperature range of 600—
1100°C and medium dose levels to 7 dpa (displacements per atom). This would provide
quantitative data necessary for predicting the irradiation behavior and operating
performance of new nuclear graphite grades for use within very-high-temperature
reactor designs.

However, due to the lack of commercial interest in building a
very-high-temperature reactor design within the United States, the graphite
irradiation program was redirected by the Department of Energy Advanced
Reactor Technology to re-irradiate the existing specimens from AGC-1 through
AGC-4 in the remaining AGC capsules to achieve higher dose levels (15 dpa) at a
lower irradiation temperature range (600-800°C). These new irradiation capsules
have been designated as the high-dose graphite (HDG) capsules. This new
low-temperature, high-dose irradiation program favors the current
high-temperature reactor design of interest to the United States commercial
nuclear community.

This report summarizes measurements from material property tests on the
designated AGC-5 specimens. Similar to past AGC runs, the specimens were
categorized as major graphite grades (IG-110, NBG-17, NBG-18, PCEA, and 2114)
and smaller experimental samples (thermal-diffusivity-sized specimens of major
grades). It is anticipated that some AGC-5 specimens may be required for use within
the new HDG-1 capsule. Any specimens from this pre-irradiation testing campaign
will be identified in the future HDG-1 pre-irradiation data report. AGC-5 specimen
testing was conducted at Idaho National Laboratory from December 2015 to
February 2018.
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AGC-5 Graphite Pre-irradiation Data Analysis Report

1. INTRODUCTION

The Advanced Reactor Technology (ART) Graphite Research and Development program is
conducting an extensive graphite irradiation program to provide data for licensing of a high-temperature
reactor (HTR) design. In past applications, graphite has been used effectively as a structural and
moderator material in both research and commercial high-temperature gas-cooled reactor designs
(Burchell, Bratton, and Windes 2007). Nuclear graphite H-451, used previously in the United States for
nuclear reactor graphite components, is no longer available. New nuclear graphite grades have been
developed and are considered suitable candidates for new HTR designs. To support the design and
licensing of new HTR core components within a commercial reactor, a complete properties database must
be developed for these current grades of graphite. Quantitative data on in-service material performance is
required for the physical, mechanical, and thermal properties of each major graphite grade with a specific
emphasis on data accounting for the life-limiting effects of irradiation creep on key physical properties of
the HTR-candidate graphite grades. Further details on the research and development activities and
associated rationale required to qualify nuclear-grade graphite for use within the HTR are documented in
the graphite technology development plan and graphite specimen selection strategy (Windes, Burchell,
and Bratton 2010, Bratton, Burchell 2005).

Based on experience with previous graphite-core components, the phenomenon of irradiation-induced
creep within graphite has been shown to be critical to the total useful lifetime of graphite components.
Irradiation-induced creep occurs under the simultaneous application of high temperatures, neutron
irradiation, and applied stresses within the graphite components. Significant internal stresses within the
graphite components can result from a second phenomenon—irradiation-induced dimensional change—
where the graphite physically changes (i.e., first shrinking and then expanding with increasing neutron
dose). This disparity in material-volume change can produce significant internal stresses within graphite
components. Irradiation-induced creep relaxes these large internal stresses, thus reducing the risk of crack
formation and component failure. Obviously, higher irradiation creep levels tend to relieve more internal
stress, thus allowing the components longer useful lifetimes within the core. Determining the irradiation
creep rates of nuclear-grade graphite is critical for determining the useful lifetime of graphite components
and is a major component of the Advanced Graphite Creep (AGC) experiment.

The AGC experiment is currently underway to determine the in-service behavior of these new
graphite grades for HTR and molten-salt reactor designs. This experiment will examine properties and
behavior of several nuclear graphite grades at two irradiation temperatures, a spectrum of irradiation
fluences, and three applied stress levels that are expected to cause irradiation creep strains within an HTR
graphite component. Irradiation data are provided through the AGC test series, which comprises six
planned capsules irradiated in the Advanced Test Reactor (ATR) in a large flux trap located at Idaho
National Laboratory (INL). Each irradiation capsule consists of over 400 graphite specimens that are
characterized before and after irradiation to determine the irradiation-induced material-properties changes
and life-limiting irradiation creep rate for each graphite grade.

In 2018, a significant change to the AGC irradiation experiment was initiated by the Department of
Energy’s ART Program. From 2005 to 2017, the AGC irradiation experiment was focused on
very-high-temperature, low-dose irradiations in support of the original very-high-temperature reactor
(VHTR) design with an anticipated outlet temperature of 1000°C. However, current interest for
graphite-core component reactors lies with HTR designs with anticipated outlet temperature of only
750°C, but with much higher received dose levels for the graphite components. To support this new
reactor design direction the AGC experiment was changed to eliminate the very-high-temperature
irradiations in place of a higher-dose irradiation. Details of this change will be presented in the following
sections.



2. AGC EXPERIMENT DESCRIPTION

The AGC experiment is designed to establish the data necessary to determine the safe operating
envelope of graphite-core components for an HTR by measuring the irradiated material property changes
and behavior of several new nuclear graphite grades over a range of temperatures, neutron fluence levels,
and mechanical compressive loads. The experiment consists of three interrelated stages: pre-irradiation
characterization of the graphite specimens, the irradiation test series (designated as six separate irradiation
test train capsules), and post-irradiation examination (PIE) and analysis of the graphite specimens after
irradiation. Separate reports for each distinct stage are prepared after each individual activity is
completed.

The pre-irradiation examination reports detail the total number of graphite types and specimens,
specimen loading configuration to expose all specimens to the entire range of irradiation conditions, and
pre-irradiation material property testing results. The test series as-run irradiation reports detail the
irradiation history of each capsule while in the reactor, noting any changes from the technical and
function specifications for each specific test series capsule, and identifying the possible improvements to
the next test series capsule design. The PIE reports detail the changes in the specimen material-property
measurements, compare the results to the pre-irradiation examination material-property measurements,
and analyze the data to assist in determining credible safe operating limits for graphite-core components
in an HTR design and licensing application.

Due to changes in the AGC irradiation experiment, this specific pre-irradiation report on AGC-5
specimens will only record the total number of graphite types, specimens, and the corresponding pre-
irradiation material property testing results.

21 Background Information for the AGC Experiment

The AGC experiment will provide irradiated material-property data for current graphite types
available for used within an HTR design. Due to volume limitations within typical material test reactors
(i.e., ATR), only a limited number of specimens can be irradiated—far fewer than can be used in an
accurate statistical specimen population analysis. Therefore, the AGC only measures the irradiated
material-property changes and behavior of relatively few specimens of new nuclear graphite grades over
the anticipated operating-temperature range, neutron fluences, and mechanical loads. The experiment
does generate quantitative material-property change data (and limited irradiation-creep data) that will be
used in conjunction with the as-fabricated material-property measurement program (baseline program) to
predict the in-service behavior and operating performance of these new nuclear graphite grades for pebble
bed and prismatic reactor designs. Changes to key thermal, physical, and mechanical material properties
are determined by comparing the material properties of each specimen before and after irradiation.
Differences measured from the irradiation conditions will provide irradiation behavior data in graphite
with a specific emphasis on data accounting for the life-limiting effects of irradiation creep on key
physical properties of several candidate graphite grades for an HTR.



The critical component of the AGC experiment is the irradiation test series, which irradiates the
graphite specimens after pre-irradiation examination characterization has been completed. The AGC test
series comprises six planned capsules that are irradiated in ATR in a large flux trap, as described in the
graphite technology development plan (Windes, Burchell, and Bratton 2010). Originally, the test series
planned to expose graphite specimens of selected nuclear grades to temperatures and a range of doses that
are expected within a VHTR design (Figure 1). However, beginning in 2018, the AGC experiment was
changed to better reflect the direction of new advanced reactor designs with anticipated outlet temperature
of only 750°C and with much higher received dose levels for the graphite components. The
very-high-temperature irradiations (1100°C) were eliminated, and the irradiation capsules were
repurposed to provide higher-dose irradiations. These new high-dose graphite (HDG) capsules will be
used to re-irradiate previous specimens irradiated in the AGC-2, AGC-3, and AGC-4 capsules to provide
a total fast neutron (E >0.1 MeV) dose range of 0.5-15 dpa, (see Figure 2).
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Figure 1. Original (2005-2017) design of AGC experiment illustrating planned dose levels and irradiation
temperatures for all six test irradiation capsules in support of a VHTR design (1100°C outlet
temperature).
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Figure 2. New graphite irradiation plan with high-dose graphite irradiations illustrating a
lower-temperature, higher-dose irradiation plan.



The higher irradiation dose, HDG, capsules, will be irradiated up to dose levels of 10 dpa at
temperatures of 600 and 800°C to correspond to the previous irradiation temperatures of the AGC-2,
AGC-3, and AGC-4 capsules. Unfortunately, all AGC-1 specimens were destructively tested before the
new direction to re-irradiated was made, and they are no longer available. By re-irradiating the previous
AGC specimens, a combined total maximum received dose of ~15 dpa is anticipated; this should exceed
turnaround dose levels for the AGC graphite grades. As illustrated in Figure 2, AGC-2 specimens will be
re-irradiated in the HDG-1 capsule while AGC-3 and AGC-4 specimens will be re-irradiated in the
HDG-2 capsule.

Because of this new direction, AGC-5 and AGC-6 unirradiated specimens will no longer be required
for the AGC irradiation experiment. The repurposed capsules, HDG-1 and HDG-2, will use previously
irradiated specimens. Therefore, this specific pre-irradiation report on AGC-5 specimens will only record
the total number of graphite types, specimens, and the corresponding pre-irradiation material-property
testing results in the event that they may be used within the new HDG capsules or with another graphite-
irradiation program at some future date.

Similar to previous specimens in the AGC-1 through AGC-4 test series, the AGC-5 specimen
inventory contains two primary specimen types: (1) creep specimens providing irradiation-creep rate
values as well as mechanical properties, and (2) piggyback specimens providing thermal material-
property changes to the graphite. The creep specimens are 25.4 mm tall by 12.5 mm in diameter and are
irradiated in the mechanically loaded outer stack positions of the capsule body where an applied load can
be imposed upon half of the specimens. Piggyback specimens are short (6 mm tall by 12.5 mm in
diameter) button specimens that reside in the axial spine of the capsule, receive no applied load, and are
subjected only to neutron irradiation to assess the effects of a reactor environment on the specific graphite
grade. Together, both specimen types provide material-property changes for stressed and unstressed
graphite types. The physical dimensions for both creep and piggyback specimens are shown in INL Dwg.
780577, “ATR Advanced Graphite Capsule (AGC) AGC-5 Graphite Specimen Cutout Diagrams.”

The larger creep specimens are best suited for physical and mechanical testing techniques, such as
dimensional change, irradiation creep, elastic modulus, density, and thermal expansion. The smaller
piggyback specimens are best suited for thermal and physical testing, such as thermal diffusivity, mass
measurements, and density.

2.2 Description of AGC-5 Test Specimens

The five major grades of graphite that were used in AGC-3/AGC-4 were also to be used in AGC-5.
These major grades are PCEA, NBG-17, NBG-18, 1G-110, and 2114. These are also the grades that will
be used within the new HDG capsules (HDG-1 and HDG-2).

The piggyback specimens in the AGC-5 capsule are smaller, button-size specimens that are
approximately 12.5 mm (1/2 in.) diameter by 6.3 mm (1/4 in.) tall. They are made of all of the major
grades of graphite. A list of all major graphite grades is provided in Table 1.



Table 1. Graphite grades and grain orientations within AGC-5 capsule.

With Grain (WG)/

Grade Specimen Type Dimension Against Grain (AG)
2114 Creep 0¥12.5 x25.4 mm 51 WG/0AG
NBG-17 Creep ?12.5 x 25.4 mm 24 WG /21 AG
NBG-18 Creep ?¥12.5 x 25.4 mm 30 WG /27 AG
I1G-110 Creep 0¥12.5 x25.4 mm 33 WG/ 15 AG
PCEA Creep 012.5 x 25.4 mm 39 WG/ 15 AG
2114 Piggyback ?12.5 x 6.3 mm 22 WG/ 15 AG
NBG-17 Piggyback ?12.5 x 6.3 mm 21 WG/ 14 AG
NBG-18 Piggyback ?12.5 X 6.3 mm 20 WG/ 16 AG
1G-110 Piggyback ?12.5 X 6.3 mm 19 WG/ 13 AG
PCEA Piggyback *12.5 x 6.3 mm 16 WG/ 13 AG

3. PRE-IRRADIATION MATERIAL PROPERTY MEASUREMENTS

The objective of the AGC experiment is to determine the material-property changes induced in
nuclear-grade graphite during exposure to a high-temperature neutron environment. The approach is to
perform extensive pre-irradiation characterization testing on each specimen before exposing the graphite
specimens to various neutron doses. After irradiation, the same characterization tests will be performed on
each irradiated specimen to quantify changes to the material properties of the graphite. As previously
mentioned, the AGC-5 and AGC-6 irradiation capsules are being replaced with the HDG, HDG-1 and
HDG-2 capsules. However, it is anticipated that the HDG capsules will utilize some fraction of the
characterized AGC-5 specimens described in this report and, therefore, the material properties of the
specimens will be recorded in anticipation of this future use.

A brief summary of the material testing is provided in Table 2. These measurements include
dimensional and non-destructive characterization of the physical properties. The properties measured
were bulk density, electrical resistivity, thermal diffusivity (room temperature to 1000°C), thermal
expansion (100—1000°C), and elastic constants using two methods. The resonant fundamental frequency
method is used to measure flexural dynamic Young’s modulus, and a sonic velocity method is used for
obtaining both the Young’s and shear modulus.

Table 2. Graphite measurement and test equipment.

Measurement

Standard

Instrumentation

Calibration Method

Result

Physical
dimensions and
mass

ASTM C559-90
(reapproved 2010)

Mitutoyo micrometer 121-155
INL ID: 725884
INL ID: 727312

Mitutoyo caliper CD-6-in.
CSX

INL ID: 725813
INL ID: 726607
INL ID: 727194
Sartorius scale ME235P
INL ID: 412642
INL ID: 415907

INL Standards and
Calibration Laboratory

Bulk density




Table 2. (continued).

manufacturer

Measurement Standard Instrumentation Calibration Method Result
Fundamental ASTM C747-16 J. W. Lemmens GrindoSonic |No calibration required |Elastic modulus
frequency INL ID: 412850 per instrument (flexural mode)

Sonic velocity

ASTM C769-98
(re-approved 2005)

Olympus NDT square wave
pulser/receiver S077PR

INL ID: 728024

National Instruments digitizer
USB 5133

INL ID: 726725
INL ID: 415868

INL Standards and
Calibration Laboratory

Young’s modulus,
shear modulus,
Poisson’s ratio

INL ID: 726912
INL ID: 727884
INL ID: 727502

Four-point ASTM C611-98 Keithly 6220 precision INL Standards and Electrical
electrical (reapproved 2010) |current source Calibration Laboratory |resistivity
resistivity INL ID: 725865

INL ID: 727290

Keithly 2182A nano

voltmeter

INL ID: 725866

INL ID: 727289
Laser flash ASTM E1461-07  |Netzsch laser flash apparatus |Calibration by user per [Thermal diffusivity
diffusivity (LFA) 457, two each manufacturer’s

INL ID: 412855 instructions

INL ID: 412864
Push rod ASTM E228-06 Netzsch DIL 402 C, two each |Calibration by user per |Coefficient of
dilatometry INL ID: 412860 manufacturer’s thermal expansion

INL ID: 412861 instructions (CTE)
Environmental  |All Vaisala pressure, humidity INL Standards and Laboratory
monitoring and temperature transmitter  |Calibration Laboratory |environmental

PTU301 conditions

The measurements listed in Table 2 are segregated into individual stations that consist of the
instrumentation necessary, a computer for automated data acquisition, and a bar-code reader. The bar
code of the individual specimen container is read, and the file for that specimen is automatically opened
for data input prior to each measurement. Associated with each measurement type is a unique laboratory
notebook maintained in accordance with MCP-2875, “Proper Use and Maintenance of Laboratory
Notebooks,” and PLN-2690, “Idaho National Laboratory Advanced Reactor Technologies Technology
Development Office Quality Assurance Program Plan.” Accepted data will be stored in the Nuclear Data
Management and Analysis System, a satellite file location for ART. Data in a standardized Excel file
format will be transmitted to the Nuclear Data Management and Analysis System using Form 250.01,
“Data Management and Analysis Transmittal,” following PLN-4653, “INL Records Management Plan.”

In addition to laboratory notebooks, the individual measurement control computers are networked to a
server computer where the measurement data are automatically stored. Control of the measurement
computers and data acquisition are accomplished with custom LabVIEW software. This software



comprises five main programs: manufacturers data, physical and dimensional measurements, electrical
resistivity measurements, sonic resonance (fundamental frequency) measurements, and sonic velocity
measurements. These five programs acquire data from instrumentation and user input. The programs then
record the results in an Excel spreadsheet located on a server computer. In the case of thermal-expansion
and thermal-diffusivity measurements, two other LabVIEW programs have also been written to parse
vendor-software-acquired data into Excel spreadsheets. The development, accuracy, and configuration
control of this software is governed by LWP-20000-01, “Conduct of Research.”

Following is the sequence in which the measurements are made:
1. Wash and dry—all specimens.
Mass and dimensional measurements—all specimens.
Thermal diffusivity—piggyback specimens.
Elastic modulus by sonic resonance—<creep specimens.
Electrical resistivity—creep specimens.
Elastic modulus by measurement of sonic velocity—creep specimens.

Wash and dry to remove couplant—creep specimens.

© N ok WD

CTE—=creep specimens.

3.1 General Provisions

The AGC-5 specimens have been characterized per PLN-5580, “AGC-5 Graphite Specimen Pre-
irradiation Characterization Plan.” This plan describes the thermal, physical, and mechanical
measurement techniques that were used to characterize the different graphite types being tested in the
AGC-5 experiment. It is intended to meet the requirements of MCP-1380, “Research and Development
Test Control,” and NQA-1-2008/1a-2009, “Quality Assurance Requirements for Nuclear Facility
Applications,” Requirement 11, Test Control. Described within the plan are the instruments, fixtures, and
methods used for pre-irradiation material-property measurements of bulk density, thermal diffusivity,
CTE, elastic modulus, and electrical resistivity.

All work was performed in accordance with LWP-21220, “Work Management.” All records
designated in implementing documents as quality assurance records were controlled in accordance with
PLN-4653.

The data resulting from the pre-irradiation characterization are plotted in Appendix A. Statistical
evaluation has been performed using an inner quartile range analysis to identify levels of precision and
outliers in the data.

3.2 Specimen Description and Preparation

The major nuclear-grade graphite types to be tested in AGC-5 are NBG-17, NBG-18, PCEA, 2114,
and IG-110. All major grades have been characterized fully per PLN-5580. The two primary specimen
types in the AGC experiments are creep specimens and piggyback specimens. All specimens are 12.5 mm
in diameter, with the creep specimens being 25.4 mm long, and the piggyback specimens being 6.3 mm
long. Details specimen geometries and how specimens were cut from the graphite blocks are contained in
INL Dwg. 780577.



Immediately after being machined, each specimen is placed in an individual container that is bar-
coded with a unique identification number per INL Dwg. 780577. Each graphite specimen is then laser-
engraved with that same unique identification number around the circumference at one end. Prior to any
material-property measurement, each specimen is identified by its unique identification number, and the
data are recorded and stored under this identification number. After the specimens have been laser-
engraved, they are ultrasonically cleaned as follows:

The specimens are handled only by persons wearing cotton or powder-free nitrile gloves.

All dust and debris is removed from the specimens using an aerosol pressurized dust-off product.
Specimens are ultrasonically cleaned for 20 minutes in deionized water.

Specimens are rinsed in ethyl alcohol to help displace water.

Specimens are allowed to air dry.

Specimens are placed in a laboratory oven at 130°C for 2 hours.

A U

Specimens are allowed to cool in a desiccator and are retained there in storage until resistivity or bulk
density measurements are taken.

3.3 Personnel and Training

Personnel who perform measurements identified in this plan are qualified in accordance with
LWP-12033, “Personnel Qualification and Certification.” Their ability to adequately perform
measurements described in this plan is demonstrated by instrument manufacturers’ training and
certification and/or performance of an instrument or measurement operational validation. Personnel
qualifications are reviewed by the Graphite research and development lead and documented in laboratory
notebooks.

3.4 Variations, Exceptions, and Discrepancies

Several variations, exceptions, and discrepancies may occur. The first is a known departure from the
applicable American Society for Testing and Materials (ASTM) standard. These departures are typically
related to geometrical constraints. All currently known departures or exceptions taken to the ASTM
standard are described in detail in Section 3 of PLN-5580. Any departure not captured in PLN-5580 will
be recorded in laboratory notebooks associated with the measurement. In most cases, the effects of the
exception or departure from the ASTM method on the measured value are not well understood. When
possible, sensitivity studies will be performed and documented in laboratory notebooks to understand the
impact of these exceptions and departures.

It is likely that the ASTM standards and/or test methods will be revised and improved during the
more than 10-year-long AGC experiment cycle. Each revision or development will be evaluated for how
it could impact future measurements and their consistency with measurements made under previous
revisions or techniques. A programmatic determination will be made whether to continue with the current
version of the ASTM/method or use the updated version. This determination will be documented in
laboratory notebooks associated with the affected measurement.

While measurements are being made, it is possible that something out of the ordinary may occur. Any
unusual event that occurs during a measurement will be documented in the laboratory notebook
associated with that specific measurement and duly noted within the database associated with the data
generated for this program. The principle investigator will be notified of the event and will determine
what impact it has on the data. The significance of the result will be documented in the laboratory
notebook by the principle investigator.



3.5 Calibration and Functional Validation

The measurement protocol consists of calibration, functional validation, and data acquisition.
Functional validations established for each measurement in collaboration with the instrument
manufacturer are performed periodically to ensure that accurate and consistent data are acquired. All
validations are performed on traceable standards and documented in retrievable laboratory notebooks
associated with each measurement. In the event that an instrument’s functional validation fails, the reason
for the failure is investigated and resolved prior to that measurement being used for further
characterization. Upon resolution, a determination is made as to the impact the failure might have had on
data taken prior to the failure and back to the last valid measurement. If it is determined the data captured
during this interval is suspect, the impacted data will be evaluated for accuracy.

LWP-13455, “Control of Measuring and Test Equipment,” is followed for calibration standards,
methods, and frequencies that have been established for each measurement. Where it is not possible to use
the INL Standards and Calibration Laboratory, user procedures for calibration are established based on
ASTM standards and manufacturers’ instructions and performed against international standards. These
procedures are documented in laboratory notebooks associated with each measurement.

4. TEST METHODS

Before any measurements are made, specimen numbers and basic information about each type of
graphite are entered into the manufacturer’s data program. Once basic information about the graphite type
has been recorded, that information is automatically saved to an Excel spreadsheet file, and the individual
specimen numbers are entered using a bar-code reader. Following the initial input of general information,
individual material-property measurements are made starting with mass and dimensional measurements
for determining bulk density.

4.1 Mass, Dimensions, and Bulk Density

Dimensional change is one of the key parameters affecting the performance of graphite in a neutron
environment. Determining volumetric and linear dimension as a function of temperature and radiological
dose is necessary to understand critical performance measures such as dimensional-change turnaround,
irradiation creep, and internal stresses imposed upon graphite components. Dimensional and mass
measurements are performed to ASTM C559-90 (re-approved 2010), which describes in detail the
procedure for making dimensional measurements and calculating bulk density.

The accuracy of the dial micrometers used here is stated by the manufacture to be 2 pm. This is a
0.008% accuracy on a 25.4 mm measurement. However, when evaluating the uncertainty of the density
determination, other factors must be considered, such as the hardness of the material and the force with
which the micrometer blade is engaged with the material, specimen-temperature variation, technician
skill, etc. These and other factors were considered in a propagation-of-error analysis to arrive at an
uncertainty of 0.08%, with the measurement of the diameter being the largest contributor to the error.

4.2 Electrical Resistivity

Electrical resistivity is used as a rapid, simple means to determine grain orientation, structure and
crystallinity of graphite. In conjunction with optical microscopy, it can be used to determine the
microstructural texture of graphite components without much specimen preparation. Resistivity is
measured following ASTM C 611-98 (re-approved 2010). The measurement technique is commonly
referred to as four-point probe. It consists of passing a known current through the specimen and
measuring the voltage across the specimen at known locations.



Based on Ohms Law, the resistance is determined, and the resistivity is calculated from:
P=R-AIL
where
R = the measured resistance
A = the cross-sectional area
L = the length over which the voltage is measured.

Figure 3 shows a test fixture fabricated at INL that allows a specimen to be rotated for multiple
measurements of voltage around its periphery.

Figure 3. Electrical resistivity measurement station.

Uncertainty in the resistivity measurement is mainly composed of the contact resistance between the
specimen and the contacting blades for the voltage measurement. Specimen temperature and the
temperature of other bimetal junctions in the voltage-measuring leads are also factors. These effects are
minimized by passing the current through the specimen in two directions and averaging the measured
voltage for each direction. In this way, any thermoelectric or small differences in junction resistances will
cancel. A round-robin test series reported in the precision and bias section of ASTM C 611-98 states a
lab-to-lab variability of 2.5%. This kind of round-robin test series would take into account the variables
discussed above and is considered a good estimate of the measurement uncertainty.
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4.3 Approximation of Elastic Modulus from the Measurement of
Sonic Velocity

The mechanical properties of graphite are necessary to determine the structural integrity of graphite
components. These properties are vital to determining the viability of the structural strength and integrity
of the reactor core. The as-received and irradiated values are needed for whole-core models, which will be
used for the graphite design code. This test is carried out in accordance with ASTM C 769-98 (re-
approved 2005). In this measurement, the transmitting piezoelectric transducer sends a 2.25-MHz sound
wave through the specimen. At the opposite end of the specimen, the acoustic wave is received by another
piezoelectric transducer. The sonic velocity of the specimen is the ratio of specimen length to the signal
time lapse between transducers.

An approximate value for Young’s modulus, E, can be obtained from:
E=pV’
where
p = the specimen density
V = the sonic velocity.

Figure 4 shows the sonic-velocity measurement station. In the foreground are the fixtures for clamping
the specimen between the transducer and receiver that were specifically designed and fabricated at INL for
this application. They have unique features that improve measurement accuracy, precision, and efficiency.
For example, measurement precision is improved because the spring-loaded clamp applies consistent
pressure between the transducers and specimen, resulting in repeatable couplant thickness. The specimens
are easily and rapidly loaded into the fixture using the cam-operated clamp.

Figure 4. Sonic-velocity measurement station.

As specified in Paragraphs 8.1 and 8.5.1 of ASTM C 769-98, a suitable coupling medium should be
used and reported with the data. Here, Shear Gel, manufactured by Sonotech, Inc., is used for a shear wave
couplant and Ultragel II, also manufactured by Sonotech, Inc., is used for the transverse wave couplant.
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Figure 5 shows the display, including the LabVIEW software user interface for sonic-velocity
measurements after scanning the bar code of the specimen to be tested. This screen is used to acquire
sonic-velocity measurements of a specimen in both the longitudinal and shear directions. Operating much
like an oscilloscope, the cursors automatically mark the time between the transmitted wave and the
received wave. Also shown in Figure 6 are two examples of the shear-wave and transverse-wave timing

locations for properly coupled specimens. The specimen length, divided by this transit time, is the sonic
velocity.

output [N

O B o d
1.26-5 1.4E-5 1.6E-5 1.8E-5 - 2.4E-5 2.499E4
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Sonic Velocity Measurements}
Specimen ID #: I:I Velocityu;l'yp.::d. i [ Write Data Continue with
ngi na to File next test
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Operator: I Specimen Sonic Velocity v I Beset _
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Input Start Time: |2.480E-5 s -
Signal Start Time: |3.500E-5 s Tt - TO:{1.110E-5 s | Approximation of Young's Modulus (E).C,Pa

Figure 5. Sonic-velocity measurement user interface.
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Figure 6. Commercial push rod dilatometer for measurement of CTE.

The uncertainty in determining elastic moduli from the measurement of sonic velocity comes from
several sources. First, there is an effect of material- and geometry-related dispersion of the transmitted
wave. ASTM C 769 provides guidance on how to minimize this problem by choosing the correct
frequency. This technique also assumes linear elastic behavior, and graphite is not completely linearly
elastic. And finally, the operator’s judgment on the placement of the timing cursors is somewhat
subjective. Clean wave forms to base these judgments on are highly dependent on the quality of the
transducer-material coupling. These sources of error are difficult to quantify and, therefore, difficult to
combine in a propagation-of-error analysis. However, ASTM C 769 describes in some detail a round-robin
test series between different labs. Using round-robin test data to determine a coefficient of variation
(COV) is a good means of estimating the measurement uncertainty. With caution, the COV of 3.8%
reported in ASTM C 769 is taken here to be representative of the uncertainty of these measurements. When
considering a single material and making comparisons between the pre- and post-irradiation values, the
precision of these measurements is good enough to consider differences greater than 4% significant.
However, one is cautioned to refrain from using the values here as absolute, or better than +10% accurate.

4.4 Modulus of Elasticity by Measurement of Fundamental
Frequency

The mechanical properties of graphite are necessary to determine the structural integrity of graphitic
components. These properties are vital to determining the viability of the structural strength and integrity
of the reactor core. This test method measures the fundamental resonant frequency of test specimens of
suitable geometry by exciting them mechanically with a singular elastic strike. Specimen supports,
impulse locations, and signal pickup points are selected to induce and measure specific modes of the
transient vibration of the specimen. The transient signals are analyzed, and the fundamental resonant
frequency is isolated and measured by the signal analyzer. The measured fundamental resonant
frequency, specimen dimensions, and mass are used to calculate the dynamic Young’s modulus, shear
modulus, and Poisson’s ratio per ASTM C747-16. The fundamental frequency measurement station is
shown in Figure 7.
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Figure 7. Fundamental frequency measurement station.

After placing a specimen in the test fixture, the user excites it by lightly tapping it with a small
mechanical impulse. A consistent impulse is achieved by placing the ball hammer onto a lever that rotates
out from under the hammer as it is raised. The specimen is supported in such a way that it vibrates at its
natural frequency. A microphone placed underneath one end of the specimen in combination with the
GrindoSonic electronics measure this frequency, which is recorded and displayed by the computer. The
modulus of elasticity is calculated and displayed next to the newly acquired frequency. If the results are
satisfactory, the user can press the “Save 1* Frequency” button and go on to the next measurement.
Following the recommendations of ASTM C747-16, 10 readings of the fundamental frequency are

measured before the results of the test are written to the applicable Excel spreadsheet.

The precision of this test method is based on an inter-laboratory study of ASTM C747-16. Two
graphite materials were analyzed by five participating laboratories. Further detail is provided in ASTM
Research Report No. ILS - 1259. As described above the measurements are made on cylindrical geometry
creep specimens vibrating in the flexural mode. Table 3 shows the precision statistics in units of GPa for
dynamic Young’s modulus calculated for a circular rod with L/D <10 vibrating in the flexural mode.

Table 3. Precision statistics in units of GPa for dynamic Young’s modulus calculated for a circular rod
with L/D <10 vibrating in the flexural mode.

Repeatability | Reproducibility
Standard Standard Repeatability Reproducibility
Average Deviation Deviation Limit Limit
Material (%) (sp) (sr) (r) (R)
IG-110 8.70 0.04 0.10 0.11 0.29
NBG-18 12.24 0.17 0.17 0.46 0.46

Repeatability is the difference between repetitive results obtained by the same operator in a given
laboratory applying the same test method with the same apparatus under constant operating conditions on
identical test material within short intervals of time. The repeatability limits for IG-110 and NBG-18 were
found to be 0.11 and 0.46 GPa, respectively.
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Reproducibility is the difference between two single and independent results obtained by different
operators applying the same test method in different laboratories using different apparatus on identical
test material. The reproducibility limits for IG-110 and NBG-18 were found to be 0.29 and 0.46 GPa,
respectively.

No graphite standard exists for this measurement, so a bias or accuracy of the measurement cannot be
determined.

4.5 Thermal Expansion

Understanding the CTE for graphite components is critical for determining the dimensional changes
that occur as a result of temperature cycles. Localized external stresses can be imposed upon
mechanically interlocked graphite-core components as the individual pieces experience differential
thermal expansion. Internal stresses can occur within larger graphite components if there is a temperature
gradient causing differential expansion within the piece (one side has a higher temperature than the other).
Finally, the thermal expansion is highly dependent upon the graphite microstructure, such as
orientation/anisotropy, pore size and distribution, and crystallinity. Irradiation damage can significantly
alter graphite microstructure and thus CTE values. Determining the extent of the changes as a function of
irradiation dose and temperature will be a key parameter for reliable calculation of stress states within
graphite components, volumetric changes, and irradiation creep rates.

The CTE measured here follows ASTM E228-06. This test method uses a push-rod-type dilatometer
to determine the change in length of a graphite specimen relative to that of the holder as a function of
temperature. The temperature is varied over the desired range at a slow constant heating or cooling rate.
The linear thermal expansion and mean CTE, a, are calculated from the recorded data using:

o LA
Lo AT
where
Ly = the specimen initial length
AL = the change in length

AT = the temperature difference between a specified reference temperature and the temperature at
which the change in length was measured.

The Netzsch DIL 402 C commercial system (Figure 6) currently used at INL does not have the
capability to cool the specimen below ambient temperature. Therefore, the initial length at 20°C is
linearly extrapolated from expansion data between 100 and 150°C, and the mean CTE is calculated from
a 20°C reference temperature.

The greatest source of experimental error in the dilatometry method described here is the correction
made for the expansion of the specimen holder and push rod/linear variable differential transformer
(LVDT) mechanism. This differential between the specimen and the apparatus must be accounted for to
isolate the specimen expansion only. Studies reported in the precision and bias section of ASTM E228-06
have indicated that this type of dilatometry can be accurate to 4% when calibrations are performed
carefully.
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4.6 Thermal Diffusivity

The ability to conduct heat through a graphite core is critical to the passive removal of decay heat.
Reduction of the thermal conductivity within graphite can have a significant effect on the passive heat
removal rate and thus the peak temperature that the core and, subsequently the fuel particles, will
experience during off-normal events. Determining changes to the conductivity as a function of irradiation
dose and temperature is important for the high-temperature gas-cooled reactor safety analysis. Here,
ASTM E1461-07 is followed for the calculation of thermal diffusivity and conductivity. Thermal
diffusivity (J) is measured and defined as the ratio of thermal conductivity to volumetric heat capacity by:

5=k
pCp

where
k = thermal conductivity
p = density
Cp = specific heat.

The measurement is performed on small, thin, disk-shaped piggyback specimens. A pulsed laser is
used to subject one surface of the specimen to a high-intensity, short-duration energy pulse. The energy of
this pulse is absorbed on the front surface of the specimen, and the resulting rise in rear-face temperature
is recorded. The thermal diffusivity is calculated from the specimen thickness and the time required for
the rear-face temperature to reach 50% of its maximum value. A commercially available laser flash
apparatus (LFA), complete with vendor-developed software for instrument control and data acquisition, is
used as shown in Figure 8.
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Figure 8. Netzch LFA measurement station for determination of thermal diffusivity.

Uncertainty in the measurement of thermal diffusivity comes about from specimen heat loss and
temperature measurement error. Specimen temperature measurement is performed with a calibrated
type-S thermocouple in the near vicinity of the specimen. Being relatively straight forward, the specimen
temperature measurement is typically a small contribution to the overall measurement error or
uncertainty.
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The main contributor to the measurement uncertainty is heat loss from the specimen. Because this
measurement technique depends on the assumption of one-dimensional heat transfer, from the flat face
receiving the laser pulse to the flat face radiating to the detector, heat-loss errors are mainly attributed to
radiative heat loss from the circumference of the specimen at temperatures above 300°C. Typically, several
correction models are provided with the instrument software to account for this heat loss. As the specimen
diameter-to-thickness ratio decreases, the heat loss increases to the point that the correction models no
longer can account for the error. A study was performed to gain a better understanding of the limits of the
models made available with the Netzsch LFA and the dependence of the diameter-to- thickness ratio on
measurement error. In this study, the heat-loss models were applied to data taken on specimens with
various diameter-to-thickness ratios and at specimen temperatures between 25 and 1000°C. It was
determined that the Cowan (Cowan 1963) model along with diameter-to-thickness ratios >2 resulted in
determination of the diffusivity within ASTM E1461-07 and the manufacturer’s specified uncertainties of
4 and 3%, respectively. This was further verified by instrument functional tests performed monthly on a
pure iron validation specimen for which the diffusivity was determined to be within 3% of the Touloukian
values between 100 and 700°C (Touloukian 1973).

5. DATA ANALYSIS

Data gathered for the characterization of AGC-5 specimens are contained in the appendixes of this
report. Appendix A contains plots of the individual data points for each specimen. Shown by the dashed
lines in each plot are the upper and lower limits of the interquartile range (IQR). These limits are
established by the lesser of either the least or greatest value in the data or by multiplying the IQR by 1.5
and adding or subtracting this value from the third and first quartile. Any data value outside of these
limits is a suspected outlier of the established pattern. However, it is important to note that these outlying
values are not only subject to measurement variability but also material variability and, therefore, cannot
necessarily be discarded. These outlying values are examined in the context of the entire data set and will
be evaluated further following irradiation. Other statistical parameters are calculated and presented in the
tables of Appendix B. The mean, standard deviation, and coefficient of variance are all calculated for the
different measurement data sets and graphite types. Upper and lower limits are presented in the tables of
Appendix B, as are the IQR limits described above.

There are many ways to combine and compare the data presented here. In doing so, the validity of the
data is exercised and scrutinized. First, the data sets are considered independently using the statistical
analysis described above. Additionally, a limited comparison of the absolute property values is performed
between different graphite types and grades. The degree of isotropy is also evaluated for the grades by
calculating the anisotropy ratio:

Value of the Property in the Against-Grain Direction
Value of the Property in the With-Grain Direction

Anisotropy Ratio =

Note that, in the case of isostatically molded graphite, with grain and against grain indicate specimens
taken from orthogonal planes in the billet.

5.1 Mass, Dimensions, and Density Data Analysis

Plots of the measured mass, dimensions, and density for all AGC-5 specimens along with their IQR
limits are shown in Appendix A, Figures A-1 through A-20 (creep specimens), and Appendix A,
Figures A-56 through A-75 (piggyback specimens). Looking over the dimensional and mass
measurements of the creep specimens for combined grain orientations, the data show that the COVs are
all below 0.5%, with the exception being the NBG-18 specimens. The NBG-18 specimens’ mass
measurements differed slightly for the with and the against-grain orientations. Appendix A, Figure A-14,
shows a difference of approximately 1% in mass, which in turn led to approximately 1% difference in
density, Appendix A, Figure A-19, with no distinguishable difference in the dimensions of with- and
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against-grain NBG-18 specimens. This difference in mass, and therefore density, is most likely due to
material variability in the billet from which the specimens were taken.

One of the most important parameters in the AGC experiment is the dimensional change of the
specimens due to irradiation and stress. Therefore, particular care needs to be taken when evaluating the
dimensional measurements. The scatter in the dimensional data is reasonable with the combined
orientation length measurements for the creep and piggyback specimens having a COV of 0.2% or less
and the combined diameter measurements having a COV of 0.12% or less. This is both a function of
machining consistency and measurement precision. There are however, some specimens throughout the
different grades that fall outside of their respective IQR. This does not necessarily indicate a measurement
error. It is possible that the specimen dimensions are simply different than the majority as a result of
machining differences.

5.2 Electrical Resistivity

Plots of electrical resistivity are shown in Appendix A, Figures A-41 through A-45, for graphite
grades 2114, IG-110, NBG-17, NBG-18, and PCEA. The resistivity measurements were performed on the
creep specimens only. The COVs for the combined orientation specimens varies by the grade. Grade 2114
had the lowest COV at 1.56%, and PCEA had the highest at 3.88%. After performing the IQR analysis for
each grade, all of the resistivity values fell within the calculated IQR limits.

In Figure 9, the mean resistivity values of all the AGC-5 grades of graphite are plotted for both
specimen grain orientations. The anisotropy ratio is displayed above each mean value. NBG-17 exhibited
the best isotropy ratio, while PCEA had the largest resistivity difference between the two grain
orientations. Grade 2114 specimens were only taken out of the billet in one grain orientation.
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Figure 9. Electrical resistivity for the major graphite grades. The anisotropy ratio is above each set of data
bars. The error bars represent =1 standard deviation.
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5.3 Approximation of Elastic Modulus from the Measurement of
Sonic Velocity

Appendix A, Figures A-46 through A-55, are plots of Young’s and shear modulus that were
calculated from the measurement of sonic velocity through the graphite specimens. Young’s and shear
moduli statistics are shown for each graphite grade in Appendix B, Tables B-10 and B-11, respectively.
The IQR analysis showed that there were two Young’s modulus outliers and four shear modulus outliers
(all were PCEA). The COVs calculated for all of the different graphite grades and grain orientations
(maximum of 3.78%) agree with the COV reported in the precision and bias section of ASTM C769
(3.8%).

Figure 10 shows the relationship between Young’s modulus measured using the sonic-velocity
technique and the density for each graphite grade. In general, as the density of a material increases, so
does the modulus of elasticity. Consistent with this, Figure 10 shows that the highest density graphite
(NBG-18) had the highest modulus of elasticity. Figure 11 shows Young’s modulus by sonic-velocity
method for each grade of graphite by grain orientation with the anisotropy ratio. PCEA and IG-110
showed the largest disparity of moduli averages between grain orientations while the NBG-18 specimens
showed the least variability with respect to grain orientation.
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Figure 10. Young’s modulus using the sonic-velocity technique versus density for each major graphite
grade. The error bars represent +1 standard deviation.
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5.4 Modulus of Elasticity by Measurement of Fundamental
Frequency

Young’s modulus of each specimen was also calculated using the fundamental frequency technique.
The results are plotted in Appendix A, Figures A-36 through A-40, and the statistical data is contained in
Appendix B, Table B-8. Statistically, these data are well-behaved with the IQR analysis showing only one
NBG-18 specimen that is outside of the IQR limits (Appendix A, Figure A-39).

It should be noted that, for AGC-5 specimens, the dynamic Young’s modulus values determined by
sonic-velocity testing techniques are generally 2—3 GPa higher than the measurements obtained by the
fundamental-frequency testing technique. This difference can be seen, for example, in the NBG-18 grade,
Appendix A, Figures A-39 and A-49. The difference between the two standards has been noted for a
number of years and was finally addressed in the latest version of the sonic-velocity standard
(ASTM 769-09). In this latest version, the Young’s modulus value is calculated from the time-of-flight
measurement utilizing a correction factor designated as the Poisson’s factor (Cv). This factor is a function
of Poisson’s ratio and normally has a value between ~0.8 and 0.9. Calculating the modulus using the
Poisson’s factor effectively lowers the value by 10 to 20%, bringing the Young’s modulus values
measured by the sonic-velocity technique nearly equal to values arrived at by the fundamental-frequency
test method.

Prior AGC specimen testing was performed under the previous ASTM sonic-velocity standard,
ASTM 769-98 (re-approved 2005), which does not use Poisson’s factor to calculate the modulus values.
In order to avoid confusion when comparing AGC-5 data to previous AGC data, it was decided to
continue using ASTM 769-98 and, when necessary, applying the correction.
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Figure 12 shows a comparison of Young’s modulus from the measurement of fundamental frequency
for the primary grades of graphite by grain orientation. Again, all of the COVs for the different graphite
grades and grain orientations compare favorably with the 3% uncertainty that is reported in the ASTM for
this measurement technique with IG-110’s COV being slightly high at 3.8%. IG-110 along with PCEA
showed the biggest discrepancy between grain orientations. The anisotropy ratio of IG-110 and PCEA
was 0.93 and 0.94, respectively. NBG-17 and NBG-18 exhibited very good anisotropy ratios of 0.98 and
0.99.
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Figure 12. Young’s modulus calculated by the fundamental-frequency method for the major graphite grades.
The anisotropy ratio is above each set of data bars. The error bars represent +1 standard deviation.

5.5 Thermal Expansion

Mean CTE data is plotted in Appendix A, Figures A-21 through A-35. A statistical evaluation of the
CTE data was performed at three discrete temperatures for each graphite type: 100, 500, and 1000°C. The
dashed lines in these plots indicate the upper and lower IQR limits. Appendix B, Tables B-5 through B-7,
contain the mean, standard deviation, COV, median, and values of the upper and lower IQR limits for the
data evaluated at the discrete temperatures.

Figure 13 shows the CTE COVs for the discrete temperatures listed above by graphite grade and
grain orientation. The CTE data is well behaved with almost all of the COVs less than 3%. IG-110
against-grain specimens had the largest COV, almost 5%, at measurement temperature 100°C.
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Figure 13. Coefficient of variance for mean CTE at three discrete temperatures for each major graphite
grade and grain orientation.

Figure 14 shows the average CTE by grade at each measurement temperature, with error bars
indicating =1 standard deviation. All of the grades show an increase with temperature in a near linear
fashion between 300 and 1000°C.
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Figure 14. Mean CTE for the major grades of graphite as a function of measurement temperature. The error
bars represent +1 standard deviation.

Measurements of CTE were performed on both with-grain and against-grain specimens. Figure 15
shows the CTE anisotropy ratio for the same primary grades of graphite as a function of temperature.
Other than IG-110, the ratios are fairly constant across all measurement temperatures. Grade 2114 is not
shown because only specimens in a single-grain orientation were used.
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Figure 15. CTE anisotropy ratio for nuclear-grade graphites as a function of temperature.

5.6 Thermal Diffusivity

Plots of thermal diffusivity are shown in Appendix A, Figures A-76 through A-90. As with the CTE
data, discrete temperatures of 100, 500, and 1000°C were statistically evaluated. Appendix B,
Tables B-16 through B-18, contain values of the mean, standard deviation, COV, median, and lower and
upper IQR limits. The COVs for all the graphite grades within specific grain orientations are below 2.5%.
Fourteen outliers were found after performing the IQR analysis. The most extreme of the outliers were
three 2114 specimens (Appendix A, Figures A-76, A-81, and A-86). For these specimens, the raw data
from which the average diffusivity was calculated were examined. The average diffusivity is calculated
from three diffusivity measurements. The COV of these three measurements for the above outliers was
roughly twice that (about 1.5%) in comparison to the other specimens (0.7%). However, it was decided
that this increase did not warrant excluding those specimens.

Figure 16 shows the diffusivity COVs for the discrete temperatures listed above by graphite grade and
grain orientation. Here, the scatter in the data for the with-grain specimens of IG-110 is significantly
higher than the other grades but still within the estimated measurement precision. Again material
variability is thought to be the cause.
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Figure 16. Coefficient of variance for diffusivity at three discrete temperatures for each major graphite
grade and grain orientation.

Figure 17 shows the average thermal diffusivity for the five primary graphite grades of interest. Error
bars are +1 standard deviation and in most cases cannot be seen because they are smaller than the plotted
symbol. The diffusivity between different grades of graphite varies as much as 40% at room temperature
(2114 and PCEA). However, this percentage reduces as the measurement temperature approaches
1000°C. The NBG-17 data in the figure is hidden behind the 1G-110 and NBG-18 data.
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Figure 17. Thermal diffusivity for various graphite types as a function of temperature. Error bars represent
+1 standard deviation.

Figure 18 shows the anisotropy ratio for the same graphite grades. As expected this ratio is constant
as a function of temperature for all grades.
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Figure 18. Thermal diffusivity anisotropy ratio for several types of nuclear-grade graphite as a function of
temperature.
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Figure A-1. 2114 creep length.
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Figure A-2. IG-110 creep length.
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Figure A-3. NBG-17 creep length.
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Figure A-4. NBG-18 creep length.
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Figure A-10. PCEA creep diameter.
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Figure A-12. 1G-110 creep mass.
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Figure A-14. NBG-18 creep mass.
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Figure A-22. 1G-110 creep coefficient of thermal expansion at 100°C.



With Grain

uL

54E-6

53E-6

LL

5.2E-6

Against Grain

5.1E-6

(E-6

49E-6

2.00T

e

i
i
o
=
ol

e
g
~ =]

L3

/1)

eydjy u

4366

£095dV
€069dY
G069dY
Z048dY
T00LdY
TogedY
£0/8dY
S0L8dY
FOE9dY
GoBady
Z099dY
€089dy
zosady
ToBadY
T0L5dY
F089dY
G09ady
FOL9dY
Z065dY
Tog9dy
Foo8dy
| FO9GAY
G099V
FOLOAY
oY
SogaMY
Tog9v
Z099MY
TOBGMY
Z0L9MY
E0LoMY
£099MY
€095V
TO9OMY
FOLOTY
TOLGMY
S0LoMY
ToLow
SOLOMY
009V
#0951V
70097V
B059MY
£0B9MY
Z085MY

4266

Figure A-23. NBG-17 creep coefficient of thermal expansion at 100°C.
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Figure A-24. NBG-18 creep coefficient of thermal expansion at 100°C.
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Figure A-26. 2114 creep coefficient of thermal expansion at 500°C.
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Figure A-27. 1G-110 creep coefficient of thermal expansion at 500°C.
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Figure A-28. NBG-17 creep coefficient of thermal expansion at 500°C.
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Figure A-29. NBG-18 creep coefficient of thermal expansion at 500°C.
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Figure A-30. PCEA creep coefficient of thermal expansion at 500°C.
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Figure A-31. 2114 creep coefficient of thermal expansion at 1000°C.
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Figure A-32. IG-110 creep coefficient of thermal expansion at 1000°C.
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Figure A-33. NBG-17 Creep Coefficient of Thermal Expansion at 1000°C.
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Figure A-34. NBG-18 creep coefficient of thermal expansion at 1000°C.
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Figure A-35. PCEA creep coefficient of thermal expansion at 1000°C.
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Figure A-36. 2114 creep modulus by resonant frequency.
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Figure A-37. IG-110 creep modulus by resonant frequency.
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Figure A-38. NBG-17 creep modulus by resonant frequency.
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Figure A-39. NBG-18 creep modulus by resonant frequency.
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Figure A-41. 2114 creep resistivity.
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Figure A-42. IG-110 creep resistivity.
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Figure A-43. NBG-17 creep resistivity.
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Figure A-44. NBG-18 creep resistivity.
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Figure A-45. PCEA creep resistivity.
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Figure A-46. 2114 creep modulus by sonic velocity.
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Figure A-47. IG-110 creep modulus by sonic velocity.
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Figure A-48. NBG-17 creep modulus by sonic velocity.
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Figure A-49. NBG-18 creep modulus by sonic velocity.
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Figure A-50. PCEA creep modulus by sonic velocity.

53



With Grain

4.5

-+ M ~ —

(edo) snjnpoyy 1eays fjdops dluog

TOSSAML
ZOTSML
FOESML
TO0OML
Z0EsML
FO9SAL
| FOBSML
ToseML
Z0BPML
FOLSAL
TOOSML
EOLSML
E0ZemL
Z06FML
E0GPML
FOBEAL
FO0SAML
£00SML
TOeFML
EOTEML
ZOPaML
Z00SML
FOBSAML
E0BEML
TOLSML
T00SML
E0SSML
TOZEML
Z09SML
FOFGAL
TO9SML
EOESML
E065ML
TOESML
E09SML
TOSSML
Z065ML
FOZGAML
Z0BGML
£08aML
E0PSML
FOBPAL
TOBFML
FOSSML
ToTSML
FOTSAML
TOFaML
=

4

Figure A-51. 2114 creep shear modulus by sonic velocity.
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Figure A-52. IG-110 creep shear modulus by sonic velocity.
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Figure A-53. NBG-17 creep shear modulus by sonic velocity.
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Figure A-54. NBG-18 creep shear modulus by sonic velocity.
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Figure A-56. 2114 piggyback length.
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Figure A-68. NBG-17 piggyback mass.
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Figure A-71. 2114 piggyback density.
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Figure A-72. IG-110 piggyback density.
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BL5606

BWE602

BLS60T

BWiba04

65

BP5501

BP5507

BP5514

BP5504

BP5505
BP5510
BR5516:
BP5512.

BP5515

BP5503

BP5513

BP5508

BP5506

BP5509

EP5511

BP5502

With Grain
uL

L

Against Grain
uL

L

With Grain
uL

LL

Against Grain
uL

LL



With Grain

1.860

1.855

1850

Against Grain |,

uL

1845

LL

1.840

830
825 ¢

8

Ly
™
]
—

~m<E1u.§ F_un.mo

1

L1815

1810

1.805

T02gva

Z0e9va

E025Va

FOE9va

Gozava

90z9va

L029%0

8025va

6029va

Oregva

TIEgva

TTEava

ETZ9v¥0

To08Md

zoosma

£00amad

Fo02Mmad

Gooama

9002Ma

L003MA

8008Ma

6008Md

OTosmd

Troama

TToaMa

ToTRMd

Z0TaMa

E0TBMA

FOT8Md

1.500

Figure A-75. PCEA piggyback density.
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Figure A-76. 2114 piggyback diffusivity at 100°C.
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Figure A-77. 1G-110 piggyback diffusivity at 100°C.
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Figure A-78. NBG-17 piggyback diffusivity at 100°C.
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Figure A-79. NBG-18 piggyback diffusivity at 100°C.
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Figure A-80. PCEA piggyback diffusivity at 100°C.
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Figure A-81. 2114 piggyback diffusivity at 500°C
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Figure A-82. IG-110 piggyback diffusivity at 500°C.
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Figure A-85. PCEA piggyback diffusivity at 500°C.
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Figure A-86. 2114 piggyback diffusivity at 1000°C.
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Figure A-87. 1G-110 piggyback diffusivity at 1000°C.
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Figure A-88. NBG-17 piggyback diffusivity at 1000°C.
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Figure A-89. NBG-18 piggyback diffusivity at 1000°C.
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Figure A-90. PCEA piggyback diffusivity at 1000°C.
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Appendix B

Statistical Tables

Table B-1. Creep specimen length (mm) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 25.412 0.015 0.06 25.413 25.445 25.381
1G-110 25.419 0.012 0.05 25.419 25.448 25.389
NBG-17 25415 0.014 0.06 25.416 25.450 25.379
NBG-18 25.415 0.011 0.04 25.417 25.438 25.391
PCEA 25.411 0.009 0.04 25.410 25.432 25.388
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 25.408 0.010 0.04 25411 25.437 25.380
1G-110 25.420 0.017 0.07 25.418 25.467 25.371
NBG-17 25.418 0.015 0.06 25.422 25.456 25.375
NBG-18 25418 0.010 0.04 25.417 25.436 25.395
PCEA 25.414 0.012 0.05 25.414 25.443 25.384
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 25.412 0.016 0.06 25.414 25.445 25.382
1G-110 25.418 0.009 0.03 25.419 25.443 25.394
NBG-17 25.413 0.014 0.05 25.412 25.441 25.384
NBG-18 25.413 0.012 0.05 25.415 25.445 25.377
PCEA 25.410 0.007 0.03 25.409 25.429 25.389
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Table B-2. Creep specimen diameter (mm) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 12.485 0.008 0.06 12.487 12.504 12.467
IG-110 12.474 0.008 0.06 12.475 12.487 12.461
NBG-17 12.464 0.010 0.08 12.466 12.493 12.435
NBG-18 12.476 0.008 0.06 12.475 12.495 12.457
PCEA 12.477 0.006 0.05 12.479 12.492 12.463
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 12.483 0.010 0.08 12.485 12.507 12.464
IG-110 12.471 0.013 0.10 12.472 12.500 12.440
NBG-17 12.459 0.011 0.09 12.463 12.501 12.417
NBG-18 12.473 0.007 0.06 12.474 12.495 12.454
PCEA 12.477 0.009 0.07 12.479 12.502 12.454
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 12.485 0.007 0.06 12.487 12.503 12.469
1G-110 12.475 0.004 0.03 12.475 12.485 12.465
NBG-17 12.467 0.006 0.05 12.467 12.487 12.450
NBG-18 12.479 0.008 0.06 12.478 12.498 12.458
PCEA 12.477 0.005 0.04 12.479 12.489 12.465
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Table B-3. Creep specimen mass (g) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.562 0.010 0.19 5.562 5.589 5.537
IG-110 5.479 0.014 0.26 5.481 5.528 5.428
NBG-17 5.570 0.022 0.40 5.572 5.643 5.497
NBG-18 5.613 0.036 0.64 5.622 5.713 5.523
PCEA 5.620 0.009 0.17 5.621 5.642 5.600
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.554 0.010 0.17 5.556 5.574 5.535
1G-110 5472 0.014 0.26 5.469 5.521 5425
NBG-17 5.579 0.023 0.41 5.586 5.657 5.496
NBG-18 5.587 0.030 0.54 5.590 5.675 5.496
PCEA 5.622 0.012 0.21 5.621 5.647 5.597
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.564 0.010 0.18 5.564 5.593 5.537
1G-110 5.482 0.013 0.24 5.484 5.521 5.445
NBG-17 5.563 0.018 0.33 5.557 5.620 5.509
NBG-18 5.638 0.019 0.34 5.639 5.691 5.581
PCEA 5.620 0.008 0.15 5.622 5.640 5.601
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Table B-4. Creep specimen density (g/cm®) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.8154 0.0023 0.13 1.8157 1.8210 1.8098
1G-110 1.7931 0.0039 0.22 1.7937 1.8054 1.7815
NBG-17 1.8258 0.0072 0.39 1.8254 1.8504 1.8002
NBG-18 1.8363 0.0114 0.62 1.8391 1.8689 1.8050
PCEA 1.8359 0.0027 0.15 1.8361 1.8410 1.8301
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.8136 0.0007 0.04 1.8136 1.8150 1.8121
1G-110 1.7915 0.0033 0.18 1.7923 1.7999 1.7832
NBG-17 1.8299 0.0067 0.37 1.8312 1.8539 1.8062
NBG-18 1.8281 0.0101 0.55 1.8289 1.8576 1.7981
PCEA 1.8362 0.0039 0.21 1.8359 1.8413 1.8289
Coefficient
With-Grain Standard of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.8157 0.0023 0.13 1.8162 1.8203 1.8115
1G-110 1.7938 0.0041 0.23 1.7947 1.8032 1.7856
NBG-17 1.8223 0.0056 0.30 1.8195 1.8381 1.8066
NBG-18 1.8436 0.0065 0.35 1.8449 1.8614 1.8259
PCEA 1.8357 0.0022 0.12 1.8362 1.8409 1.8306
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Table B-5. Creep specimen coefficient of thermal expansion (1/K) at 100°C summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.15E-06 9.17E-08 1.78 5.17E-06 5.38E-06 4.93E-06
IG-110 3.70E-06 1.40E-07 3.77 3.66E-06 4.16E-06 3.27E-06
NBG-17 4.85E-06 1.04E-07 2.14 4.86E-06 5.20E-06 4.54E-06
NBG-18 4.98E-06 1.03E-07 2.06 4.98E-06 5.23E-06 4.73E-06
PCEA 4.10E-06 2.11E-07 5.16 4.07E-06 4.64E-06 3.49E-06
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 — — — — — —
1G-110 3.86E-06 7.27E-08 1.88 3.89E-06 4.10E-06 3.62E-06
NBG-17 4.92E-06 7.64E-08 1.55 4.95E-06 5.16E-06 4.67E-06
NBG-18 4.99E-06 8.80E-08 1.76 4.99E-06 5.19E-06 4.78E-06
PCEA 4.34E-06 2.12E-07 4.88 4.36E-06 4.89E-06 3.88E-06
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.15E-06 9.17E-08 1.78 5.17E-06 5.38E-06 4.93E-06
1G-110 3.63E-06 9.30E-08 2.56 3.63E-06 3.80E-06 3.45E-06
NBG-17 4.79E-06 8.72E-08 1.82 4.80E-06 5.06E-06 4.53E-06
NBG-18 4.96E-06 1.14E-07 2.30 4.97E-06 5.27E-06 4.67E-06
PCEA 4.01E-06 1.19E-07 2.97 4.03E-06 4.39E-06 3.62E-06
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Table B-6. Creep specimen coefficient of thermal expansion (1/K) at 500°C summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.59E-06 9.62E-08 1.72 5.59E-06 5.86E-06 5.33E-06
IG-110 4.25E-06 1.32E-07 3.11 4.23E-06 4.68E-06 3.83E-06
NBG-17 5.41E-06 1.14E-07 2.11 5.43E-06 5.70E-06 5.14E-06
NBG-18 5.55E-06 1.03E-07 1.85 5.56E-06 5.81E-06 5.29E-06
PCEA 4.58E-06 2.00E-07 4.37 4.54E-06 5.06E-06 4.06E-06
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 — — — — — —
1G-110 4.40E-06 6.43E-08 1.46 4.40E-06 4.59E-06 4.21E-06
NBG-17 5.49E-06 8.05E-08 1.47 5.47E-06 5.72E-06 5.25E-06
NBG-18 5.56E-06 9.27E-08 1.67 5.55E-06 5.70E-06 5.39E-06
PCEA 4.85E-06 1.26E-07 2.60 4.84E-06 5.28E-06 4.44E-06
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.59E-06 9.62E-08 1.72 5.59E-06 5.86E-06 5.33E-06
IG-110 4.18E-06 8.98E-08 2.15 4.17E-06 4.39E-06 3.97E-06
NBG-17 5.35E-06 1.01E-07 1.89 5.36E-06 5.68E-06 5.00E-06
NBG-18 5.54E-06 1.12E-07 2.02 5.57E-06 5.91E-06 5.17E-06
PCEA 4.48E-06 1.04E-07 2.33 4.49E-06 4.79E-06 4.14E-06
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Table B-7. Creep specimen coefficient of thermal expansion (1/K) at 1000°C summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.97E-06 1.35E-07 2.26 5.95E-06 6.42E-06 5.55E-06
IG-110 4.63E-06 1.37E-07 2.95 4.61E-06 5.05E-06 4.23E-06
NBG-17 5.81E-06 1.21E-07 2.08 5.82E-06 6.09E-06 5.52E-06
NBG-18 5.98E-06 8.32E-08 1.39 6.00E-06 6.26E-06 5.70E-06
PCEA 5.05E-06 2.08E-07 4.11 4.98E-06 5.60E-06 4.53E-06
Coefficient
Against- Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 — — — — — —
1G-110 4.79E-06 8.47E-08 1.77 4.78E-06 5.03E-06 4.53E-06
NBG-17 5.88E-06 9.46E-08 1.61 5.86E-06 6.13E-06 5.63E-06
NBG-18 5.99E-06 6.90E-08 1.15 6.00E-06 6.17E-06 5.83E-06
PCEA 5.34E-06 1.15E-07 2.16 5.34E-06 5.61E-06 5.09E-06
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 5.97E-06 1.35E-07 2.26 5.95E-06 6.42E-06 5.55E-06
1G-110 4.56E-06 9.04E-08 1.98 4.55E-06 4.80E-06 4.31E-06
NBG-17 5.74E-06 1.02E-07 1.79 5.74E-06 6.06E-06 5.43E-06
NBG-18 5.98E-06 9.44E-08 1.58 5.99E-06 6.30E-06 5.66E-06
PCEA 4.94E-06 9.78E-08 1.98 4.95E-06 5.16E-06 4.71E-06
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Table B-8. Creep specimen modulus (GPa) by sonic resonance summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 9.67 0.09 0.95 9.69 9.99 9.35
IG-110 10.19 0.38 3.77 10.28 11.29 9.06
NBG-17 11.31 0.18 1.59 11.29 11.74 10.87
NBG-18 11.77 0.30 2.53 11.76 12.46 11.11
PCEA 11.21 0.34 3.04 11.38 12.47 9.78
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 — — — — — —
1G-110 9.70 0.19 1.95 9.72 10.42 8.97
NBG-17 11.18 0.13 1.19 11.18 11.60 10.76
NBG-18 11.72 0.34 2.92 11.76 12.83 10.55
PCEA 10.69 0.08 0.71 10.68 10.94 10.42
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 9.67 0.09 0.95 9.69 9.99 9.35
IG-110 10.41 0.20 1.89 10.38 10.93 9.87
NBG-17 11.42 0.13 1.14 11.39 11.90 10.96
NBG-18 11.82 0.25 2.09 11.76 12.34 11.25
PCEA 11.42 0.10 0.84 11.43 11.68 11.15
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Table B-9. Creep specimen resistivity (u{2-m) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 13.86 0.22 1.56 13.83 14.48 13.25
1G-110 10.96 0.33 2.98 10.90 11.94 9.97
NBG-17 11.28 0.26 2.29 11.26 11.90 10.66
NBG-18 10.99 0.26 2.39 10.98 11.82 10.14
PCEA 7.84 0.30 3.88 7.75 9.14 6.67
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 — — — — —
1G-110 11.28 0.27 2.36 11.25 11.91 10.74
NBG-17 11.37 0.20 1.72 11.38 11.83 10.89
NBG-18 11.20 0.20 1.81 11.19 11.67 10.75
PCEA 8.28 0.08 0.96 8.27 8.50 8.07
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 13.86 0.22 1.56 13.83 14.48 13.25
IG-110 10.81 0.22 2.06 10.80 11.39 10.20
NBG-17 11.20 0.28 2.54 11.16 11.88 10.49
NBG-18 10.80 0.13 1.22 10.77 11.19 10.43
PCEA 7.67 0.13 1.65 7.66 8.06 7.29
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Table B-10. Creep specimen Young’s modulus (GPa) by sonic velocity.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 10.72 0.10 0.89 10.72 10.96 10.50
1G-110 11.00 0.42 3.78 11.10 12.27 9.70
NBG-17 13.71 0.26 1.87 13.73 14.46 12.97
NBG-18 14.93 0.32 2.14 14.91 15.80 14.02
PCEA 13.05 0.49 3.77 13.29 14.75 11.14
Coefficient
Against-Grain Standard | Of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 — — — — — —
1G-110 10.48 0.16 1.57 10.50 11.11 9.89
NBG-17 13.51 0.20 1.46 13.52 13.88 13.12
NBG-18 14.96 0.36 2.40 14.92 16.03 13.93
PCEA 12.34 0.14 1.11 12.33 12.63 12.05
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 10.72 0.10 0.89 10.72 10.96 10.50
IG-110 11.24 0.24 2.10 11.21 11.79 10.66
NBG-17 13.87 0.17 1.24 13.89 14.35 13.35
NBG-18 14.91 0.29 1.95 14.90 15.77 14.00
PCEA 13.36 0.15 1.11 13.36 13.69 13.01
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Table B-11. Creep specimen shear modulus (GPa) by sonic velocity.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 4.24 0.03 0.77 4.24 4.33 4.15
1G-110 4.58 0.11 2.31 4.58 4.88 4.28
NBG-17 4.84 0.07 1.45 4.86 5.07 4.60
NBG-18 5.13 0.10 2.00 5.13 5.43 4.85
PCEA 4.93 0.08 1.56 4.95 5.05 4.83
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 -- 0.00 -- 0.00 0.00 0.00
I1G-110 4.54 0.06 1.39 4.55 4.71 4.38
NBG-17 4.84 0.06 1.25 4.86 5.06 4.60
NBG-18 5.11 0.11 2.22 5.10 5.48 4.74
PCEA 4.89 0.11 2.33 4.94 5.03 4.85
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 4.24 0.03 0.77 4.24 4.33 4.15
1G-110 4.60 0.12 2.56 4.62 4.97 4.23
NBG-17 4.85 0.08 1.62 4.84 5.12 4.59
NBG-18 5.15 0.09 1.76 5.17 5.42 4.89
PCEA 4.94 0.05 1.07 4.96 5.06 4.82
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Table B-12. Piggyback specimen length (mm) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 6.367 0.012 0.19 6.363 6.404 6.332
1G-110 6.369 0.007 0.12 6.368 6.390 6.349
NBG-17 6.358 0.006 0.09 6.358 6.377 6.339
NBG-18 6.345 0.010 0.16 6.346 6.366 6.321
PCEA 6.354 0.005 0.08 6.354 6.367 6.340
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 6.369 0.013 0.20 6.364 6.398 6.336
1G-110 6.369 0.010 0.16 6.367 6.407 6.334
NBG-17 6.356 0.005 0.08 6.356 6.372 6.342
NBG-18 6.348 0.010 0.15 6.348 6.370 6.324
PCEA 6.356 0.005 0.07 6.356 6.365 6.345
Coefficient
With-Grain Standard of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 6.366 0.011 0.18 6.362 6.408 6.327
1G-110 6.369 0.005 0.08 6.369 6.386 6.353
NBG-17 6.359 0.006 0.10 6.358 6.380 6.338
NBG-18 6.343 0.010 0.15 6.344 6.365 6.314
PCEA 6.352 0.005 0.08 6.353 6.367 6.338
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Table B-13. Pigg

back specimen diameter (mm) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 12.477 0.013 0.10 12.482 12.509 12.449
IG-110 12.463 0.010 0.08 12.467 12.484 12.447
NBG-17 12.466 0.006 0.05 12.468 12.489 12.440
NBG-18 12.474 0.006 0.05 12.475 12.485 12.463
PCEA 12.475 0.005 0.04 12.477 12.486 12.466
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 12.472 0.015 0.12 12.481 12.520 12.424
1G-110 12.455 0.011 0.09 12.456 12.493 12.418
NBG-17 12.468 0.004 0.03 12.469 12.478 12.460
NBG-18 12.469 0.007 0.05 12.470 12.486 12.456
PCEA 12.477 0.003 0.03 12.479 12.484 12.471
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 12.482 0.007 0.06 12.483 12.506 12.459
1G-110 12.469 0.002 0.02 12.470 12.478 12.461
NBG-17 12.464 0.007 0.05 12.466 12.489 12.440
NBG-18 12.477 0.003 0.02 12.476 12.487 12.468
PCEA 12.473 0.006 0.05 12.476 12.488 12.459
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Table B-14. Piggyback specimen mass (g) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.411 0.002 0.17 1.411 1.417 1.405
1G-110 1.381 0.004 0.30 1.382 1.388 1.375
NBG-17 1.416 0.005 0.38 1.416 1.434 1.397
NBG-18 1.420 0.009 0.62 1.419 1.446 1.394
PCEA 1.422 0.004 0.26 1.423 1.431 1.413
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.411 0.002 0.16 1.411 1.416 1.406
1G-110 1.379 0.006 0.40 1.380 1.394 1.365
NBG-17 1.421 0.003 0.22 1.422 1.433 1.409
NBG-18 1.414 0.005 0.39 1.413 1.433 1.394
PCEA 1.423 0.003 0.24 1.424 1.430 1.418
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.411 0.003 0.19 1.410 1.418 1.403
1G-110 1.382 0.003 0.20 1.382 1.387 1.377
NBG-17 1.412 0.003 0.23 1411 1.421 1.403
NBG-18 1.425 0.008 0.55 1.426 1.451 1.399
PCEA 1.420 0.003 0.23 1.421 1.430 1.412
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Table B-15. Pigg

back specimen density (g/cm’) summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.8121 0.0022 0.12 1.8121 1.8180 1.8061
IG-110 1.7769 0.0045 0.25 1.7778 1.7860 1.7683
NBG-17 1.8244 0.0065 0.36 1.8230 1.8478 1.8011
NBG-18 1.8318 0.0109 0.59 1.8315 1.8634 1.7983
PCEA 1.8308 0.0046 0.25 1.8326 1.8396 1.8233
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.8130 0.0023 0.13 1.8132 1.8186 1.8079
1G-110 1.7774 0.0063 0.36 1.7785 1.7888 1.7665
NBG-17 1.8310 0.0041 0.22 1.8315 1.8439 1.8191
NBG-18 1.8239 0.0068 0.37 1.8224 1.8492 1.7984
PCEA 1.8317 0.0042 0.23 1.8330 1.8370 1.8286
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 1.8112 0.0017 0.09 1.8113 1.8157 1.8066
1G-110 1.7765 0.0029 0.16 1.7777 1.7842 1.7693
NBG-17 1.8200 0.0033 0.18 1.8189 1.8276 1.8114
NBG-18 1.8380 0.0094 0.51 1.8383 1.8715 1.8062
PCEA 1.8301 0.0048 0.26 1.8310 1.8425 1.8180
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Table B-16. Pigg

back specimen diffusivity (mm?/sec) at 100°C summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 63.46 0.42 0.66 63.38 64.44 62.48
1G-110 79.28 2.99 3.77 80.48 89.49 69.56
NBG-17 75.61 0.88 1.16 75.36 78.63 72.64
NBG-18 75.92 0.96 1.26 7591 78.67 73.19
PCEA 97.68 3.84 3.93 100.47 112.63 82.23
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 63.59 0.46 0.72 63.69 64.58 62.54
1G-110 76.06 1.68 2.21 76.53 81.32 71.08
NBG-17 74.85 0.34 0.46 74.91 75.67 74.06
NBG-18 75.35 0.70 0.93 75.25 76.91 73.95
PCEA 93.52 0.52 0.55 93.56 95.21 91.92
Coefficient
With-Grain Standard of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 63.37 0.37 0.59 63.30 64.27 62.42
IG-110 81.48 0.93 1.14 81.88 84.62 78.37
NBG-17 76.11 0.76 1.00 76.33 78.23 73.96
NBG-18 76.38 0.90 1.18 76.46 79.17 73.63
PCEA 101.05 0.42 0.41 101.23 102.27 99.87
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Table B-17. Pigg

back specimen diffusivity (mm?/sec) at 500°C summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 26.00 0.20 0.78 25.98 26.54 25.46
1G-110 30.17 1.12 3.70 30.59 34.18 26.32
NBG-17 29.29 0.30 1.04 29.28 30.45 28.10
NBG-18 29.45 0.36 1.21 29.49 30.42 28.48
PCEA 35.44 1.32 3.74 36.36 40.48 30.21
Coefficient
Against-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 26.15 0.18 0.68 26.14 26.50 25.76
IG-110 28.95 0.59 2.02 29.16 30.56 27.46
NBG-17 28.99 0.11 0.37 28.97 29.06 28.88
NBG-18 29.30 0.32 1.08 29.26 30.32 28.30
PCEA 34.01 0.22 0.66 34.06 34.52 33.64
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 25.90 0.15 0.59 25.90 26.21 25.60
IG-110 31.00 0.36 1.16 31.19 32.20 29.75
NBG-17 29.48 0.22 0.74 29.52 30.06 28.97
NBG-18 29.57 0.35 1.17 29.62 30.41 28.69
PCEA 36.60 0.17 0.46 36.59 37.19 36.03
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Table B-18. Pigg

back specimen diffusivity (mm?/sec) at 1000°C summary statistics.

Coefficient
Combined Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 15.96 0.27 1.72 15.90 16.32 15.50
1G-110 17.91 0.68 3.82 18.15 20.16 15.71
NBG-17 17.54 0.26 1.50 17.52 18.36 16.75
NBG-18 17.64 0.22 1.26 17.67 18.23 16.99
PCEA 20.51 0.76 3.72 20.85 23.55 17.45
Coefficient
Against-Grain Standard | Of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 16.11 0.33 2.04 16.01 16.42 15.62
1G-110 17.17 0.38 2.23 17.34 18.26 16.12
NBG-17 17.35 0.14 0.83 17.34 17.72 16.93
NBG-18 17.63 0.24 1.37 17.64 18.49 16.77
PCEA 19.70 0.17 0.86 19.68 20.26 19.16
Coefficient
With-Grain Standard | of Variation
Specimens Mean Deviation (%) Median Upper Limit | Lower Limit
2114 15.85 0.17 1.08 15.83 16.19 15.44
IG-110 18.41 0.23 1.24 18.43 19.20 17.61
NBG-17 17.66 0.25 1.42 17.71 18.29 17.05
NBG-18 17.64 0.21 1.20 17.68 17.99 17.35
PCEA 21.16 0.22 1.03 21.24 21.83 20.46
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